Weyl asymptotics for non-self-adjoint operators and related questions

نویسنده

  • Johannes Sjöstrand
چکیده

Mini course 4×50 minutes, in Rennes, 14-17 June 2011. Résumé Mini-cours 4×50 minutes à Rennes, 14-17 juin 2011.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on non-self-adjoint operators, a survey

This text is a survey of recent results obtained by the author and collaborators on different problems for non-self-adjoint operators. The topics are: Kramers-Fokker-Planck type operators, spectral asymptotics in two dimensions and Weyl asymptotics for the eigenvalues of non-self-adjoint operators with small random perturbations. In the introduction we also review the notion of pseudo-spectrum ...

متن کامل

Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations

— In this work we extend a previous work about the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint differential operators with small multiplicative random perturbations, by treating the case of operators on compact manifolds.

متن کامل

Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations

In this work we continue the study of the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random perturbations, by treating the case of multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects. Résumé Dans ce travail nous continuons l’étude de l’asymptot...

متن کامل

Non-self-adjoint Differential Operators

We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...

متن کامل

On Self-adjoint and J-self-adjoint Dirac-type Operators: A Case Study

We provide a comparative treatment of some aspects of spectral theory for self-adjoint and non-self-adjoint (but J-self-adjoint) Dirac-type operators connected with the defocusing and focusing nonlinear Schrödinger equation, of relevance to nonlinear optics. In addition to a study of Dirac and Hamiltonian systems, we also introduce the concept of Weyl–Titchmarsh half-line m-coefficients (and 2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011